Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels
نویسندگان
چکیده
منابع مشابه
Subgradient-based Neural Network for Nonconvex Optimization Problems in Support Vector Machines with Indefinite Kernels
Support vector machines (SVMs) with positive semidefinite kernels yield convex quadratic programming problems. SVMs with indefinite kernels yield nonconvex quadratic programming problems. Most optimization methods for SVMs rely on the convexity of objective functions and are not efficient for solving such nonconvex problems. In this paper, we propose a subgradientbased neural network (SGNN) for...
متن کاملSupport vector machines with indefinite kernels
Training support vector machines (SVM) with indefinite kernels has recently attracted attention in the machine learning community. This is partly due to the fact that many similarity functions that arise in practice are not symmetric positive semidefinite, i.e. the Mercer condition is not satisfied, or the Mercer condition is difficult to verify. Previous work on training SVM with indefinite ke...
متن کاملSupport Vector Machine Classification with Indefinite Kernels
We propose a method for support vector machine classification using indefinite kernels. Instead of directly minimizing or stabilizing a nonconvex loss function, our algorithm simultaneously computes support vectors and a proxy kernel matrix used in forming the loss. This can be interpreted as a penalized kernel learning problem where indefinite kernel matrices are treated as a noisy observation...
متن کاملA Neural Network Model Based on Support Vector Machine for Conceptual Cost Estimation in Construction Projects
Estimation of the conceptual costs in construction projects can be regarded as an important issue in feasibility studies. This estimation has a major impact on the success of construction projects. Indeed, this estimation supports the required information that can be employed in cost management and budgeting of these projects. The purpose of this paper is to introduce an intelligent model to im...
متن کاملData-driven Kernels for Support Vector Machines
Kernel functions can map data points to a non-linear feature space implicitly, and thus significantly enhance the effectiveness of some linear models like SVMs. However, in current literature, there is a lack of a proper kernel that can deal with categorical features naturally. In this paper, we present a novel kernel for SVM classification based on data-driven similarity measures to compute th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Industrial and Management Optimization
سال: 2015
ISSN: 1547-5816
DOI: 10.3934/jimo.2016.12.285